If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-10t+3=0
a = 5; b = -10; c = +3;
Δ = b2-4ac
Δ = -102-4·5·3
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{10}}{2*5}=\frac{10-2\sqrt{10}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{10}}{2*5}=\frac{10+2\sqrt{10}}{10} $
| 0.25x^2+0.5x=0 | | 4x+25=-35-5x | | -9d-10d+12d=-6 | | 5x+3=8+x | | -9d—10d+-12=-6 | | 3y/3y+6+9/3y-6=0 | | u+-7=-11 | | X^3+4x^2+5x-6=0 | | 3y-6+6=180 | | 5x+3=8+× | | 196x2+196x=200x2 | | 14v-11v-3=18 | | 108a+6a2=15a2 | | 7g-12=3G-5g+96 | | 6d-2=14 | | 18=4(p+3)+2 | | t^2+1.2t+1.44=0 | | p+80/2=8 | | 5a+1÷7a+5=3a+1÷7a+1 | | 4=-2x=28 | | 5/4=−4c+1/4 | | 5/4=−4c+1/4 | | 6.4x=12.2 | | 2x^2-23x+39=0 | | 7x-7=x+8 | | 10x+10=34-2x | | 1*6-x*2=3 | | 4q=81 | | x•x•x•x•x•x•x•x•x•x•x•x•x•x=14x | | 4=r-7 | | 4(5-3x)=8x+7 | | z∕10-9=9 |